3 просмотров
от (220 баллов) в категории Українська мова

How Does a Rectifier Work?

Rectifier, device that converts alternating electric current into direct current. It may be an electron tube (either a vacuum or a gaseous type), vibrator, solid-state device, or mechanical device. Direct current is necessary for the operation of many devices such as laptop computers, televisions, and certain power tools.

If only one polarity of an alternating current is used to produce a pulsating direct current, the process is called half-wave rectification. When both polarities are used, producing a continuous train of pulses, the process is called full-wave rectification.

You may wonder how power lines send electric currents across long distances for different purposes. And there are different "types" of electricity. The electricity that powers electric railway systems may not be appropriate for household appliances like phones and television sets. Rectifiers help by converting between these different types of electricity.

Bridge Rectifier and Rectifier Diode

AC DC rectifier lets you convert from alternating current (AC) to direct current (DC). AC is current that switches between flowing backwards and forwards at regular intervals while DC flows in a single direction. They generally rely on a bridge rectifier or a rectifier diode.

All rectifiers use P-N junctions, semiconductor devices that let electric current flow in only a single direction from the formation of p-type semiconductors with n-type semiconductors. The "p" side has an excess of holes (locations where there are no electrons) so it is positively charged. The "n" side is negatively charged with electrons in their outer shells.

Many circuits with this technology are built with a bridge rectifier. Bridge rectifiers convert AC to DC using its system of diodes made of a semiconductor material in either a half wave method that rectifiers one direction of the AC signal or a full wave method that rectifies both directions of the input AC.

Semiconductors are materials that let current flow because they're made of metals like gallium or metalloids like silicon that are contaminated with materials like phosphorous as a means of controlling current. You can use a bridge rectifier for different applications for a wide range of currents.

Bridge rectifiers also have the advantage of outputting more voltage and power than other rectifiers. Despite these benefits, bridge rectifiers suffer from having to use four diodes with the extra diodes compared to other rectifiers, causing a voltage drop that decreases the output voltage.

Silicon and Germanium Diodes

Scientists and engineers generally use silicon more frequently than germanium in creating diodes. Silicon p-n junctions work more effectively at higher temperatures than germanium ones. Silicon semiconductors let electric current flow more easily and can be created with lower costs.

These diodes take advantage of the p-n junction to convert AC to DC as a sort of electric "switch" that lets current flow in either the forward or reverse direction based on the p-n junction direction. Forward biased diodes let current continue to flow while reverse biased diodes block it. This is what causes silicon diodes to have a forward voltage of about 0.7 volts so that they only lets current flow if it's more than volts. For germanium diodes, the forward voltage is 0.3 volts.

The anode terminal of a battery, electrode or other voltage source where oxidization occurs in a circuit, supplies the the holes to the cathode of a diode in forming the p-n junction. In contrast, the cathode of a voltage source, where reduction occurs, provides the electrons that are sent to the anode of the diode.

Range and charging time may be less of an issue if an EV is the second car. If an EV is the only car, for long summer or holiday trip, owners can do what owners of compact gasoline-powered sedans may do: Rent a midsize or larger SUV for that two-week vacation. Or find a hotel with on-site charging.

For those who charge at home, you need to have the right charging equipment, and the proper electrical supply.

With EV charging, there isn’t a one-size-fits-all solution. Electric vehicles have different charging capabilities and requirements and every owner also has their own driving needs.

Here’s a look at key aspects of choosing the right charging equipment, installing it properly and best practices for using EV charging accessories at home.

Do You Need to Buy an EV Charger When One Comes Free?

Every electric car comes standard with a portable charger. (This thick cable that plugs into a wall outlet and the car counts as a charger.) However, every manufacturer provides a different unit, with varying levels of charging capabilities. In some cases, the same manufacturer provides different standard charging equipment depending on which of its EV offerings you purchase or lease.

EV charging connector types: what they are and how they compare

Moving to an EV from a petrol car is fairly straightforward. All the controls are in the same place, and the steering wheel hasn't changed into a large carrot or anything like that.

The thing that is different, however, is the fuel - and that means a new type of fueling connector. EV charging connector is broadly similar to a petrol hose - they're a pipe the electricity comes down - but there are three distinct types of charger, and they might need an adapter depending on what's fitted on your new electric car.

GB/T Charging Connectors

China, which has the world's largest electric car fleet, has its own charging connection. GB/T charging connectors again comes in AC and DC variants, the former with seven pins, and the latter with nine. Its plugs are circular, with a flattened edge, and larger than other types.

Type1 / CCS1 Conenctors

CCS, or combined charging system, is a beautifully elegant solution for fast DC charging. These are the original plugs, either Type 1 or Type 2, to which two more pins are added at the bottom. In the case of DC charging, these two lower pins participate in the charging itself and from the upper part only the communication pin and the earth conductor, which provides the reference point for the protection systems, are used. These connectors can withstand power of up to 350 kW.

It is currently the most popular type of DC connector. Type1 / CCS1 conenctors are common in the United States, while Type 2 CCS is used in Europe. The European Parliament's efforts to allow only CCS 2 and other plugs to be phased out of Europe have not been successful, but this standard is still winning, mainly because the car has only one socket. When using the CHAdeMO connector, the car must always have two sockets.

Пожалуйста, войдите или зарегистрируйтесь чтобы ответить на этот вопрос.

Похожие вопросы

0 ответов
спросил 14 Окт от asdfaas18 (210 баллов) в категории Українська мова
0 ответов
спросил 30 Сен от asdfaas81 (200 баллов) в категории Українська мова
0 ответов
спросил 27 Сен от asdfaas76 (220 баллов) в категории Українська мова
0 ответов
спросил 16 Авг от asdfaas570 (210 баллов) в категории Українська мова
0 ответов
спросил 16 Авг от asdfaas570 (210 баллов) в категории Українська мова

Топ рейтинг сайтов! Статистика посещаемости сайтов Stata.Me